一种可编程的润湿性阵列,以用于液滴操纵。
Introduction
小质量流体的可控操纵因其在化学反应、医疗诊断、生物分析等广阔的应用前景上唤起了大量的兴趣和研究。当前已有大量方法被开发以操纵液滴,如电、声波、磁、光和湿润梯度。其中,基于湿润表面的技术的液滴操纵是一种理想的选择,因为它们在简化和效率上具有不可比拟的优势。特别是具有可调的润湿性的表面,能够对外界刺激做出可逆的反应,抑制液滴的固定和滑动,显示出智能和可控性的优势。尽管当前有很多成功的应用,它们中大部分只能展示统一的控制行为,因此很难精确地操纵液滴去一个具体的位置或多个位置。因此,具有编程能力的湿润性位置的功能表面仍被预期扩展它们在液滴操纵中的实际价值。
本文由植物上的气孔启发,提出了使用微流控乳化模板对液滴进行处理的可编程润湿性阵列,如图1所示。气孔是被一对保卫细胞围绕的独特植物结构具有液压门控功能,可自动转换打开和关闭状态以调节与环境的气体交换。微流控是一个平台,通过微尺度的整合的通道以精确控制和操纵小质量的流体。
作者通过使用同轴组装的毛细管微流控装置将氧化石墨烯(graphene oxide, GO)复合N-异丙基丙烯酰胺(N-isopropylacrylamide, NIPAM)水凝胶溶液乳化在纳米二氧化硅分散的乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)相,从而制造了具有润湿性阵列的所需表面。
有关类似光敏GO/NIPAM复合凝胶,国内期刊也有提及[2],对照看增加理解。
Fig. 1.
- (A)植物上的气孔根据环境打开或闭合。
- (B)类似于气孔的刺激响应能力,在远程的近红外照射下,功能性表面也能转换它的水附着能力,使液滴在可编程润湿性途径上可控滑动。
Fig. 2.
- (A)使用微流控模板制备具有润湿性阵列的表面的流程。其中,微流控乳化装置由内、外毛细血管同轴组装而成,在这个系统里,GO/NIPAM溶液作为分散相,纳米SiO2分散的ETPTA作为连续相。
- (B)微流控乳化模板的生成过程。
- (C)自组装的GO-NIPAM液滴的光学图像。
- (D)湿润性阵列的聚合表面的光学图像。
- (E)功能性表面的扫描电镜图像。
- (F)E图蓝框放大,显示了ETPTA表面分布的纳米二氧化硅。
- (G)E图红框放大,显示复合水凝胶的多孔微结构。
乳化过程:
Fig. 3.
- (A)近红外照射下,湿润性阵列表面上的液滴滑行过程。
- (B~C)通过设计好的路径实现表面上的多个液滴的动态控制。
- (D)为了证明可重复性,进行了10次NIR开关的循环,表面上的水接触角的变化与激光循环数的函数关系。
Fig. 4.
- (A)通过NIR控制的湿润性阵列表面上的液滴释放示意图。
- (B)液滴(10 μL)从表面释放的光学图像。
- (C)通过功能性表面的多个液滴(4 × 4阵列)转移。
Fig. 5.
- (A)可调湿润性表面辅助液滴微反应器的示意图。
- (B)时间序列图像和透射电子显微镜图像显示了基于微反应器的CdS纳米晶体的合成。
- (C)使用可调湿润性表面的液滴转移能力的生物检测过程光学图像。
Fig. 6.
- (A)从整合了光掩模的可调湿润性释放表面图案化的液滴的示意图。
- (B~C)不同图案的光学和荧光图。
- (D)隐藏了二维码信息的液滴阵列,通过红光过滤器可以看到被加密的信息。
Discussion
作者通过微流控乳化技术展示了一个生物启发的疏水表面的光控制可编程的湿润性阵列。在NIR的照射下,由于GO的光热性质,复合水凝胶阵列可以转换表面液滴吸附状态。
Reference
[1] Sun L, Bian F, Wang Y, et al. Bioinspired programmable wettability arrays for droplets manipulation[J]. Proceedings of the National Academy of Sciences, 2020, 117(9): 4527–4532.
[2] 张宁, 单国荣. 近红外光响应氧化石墨烯/微凝胶复合智能水凝胶[J]. 化工学报, 2018, 69(11): 4862-4868. doi: 10.11949/j.issn.0438-1157.20180581